Publications
INTERNATIONAL JOURNALS
2024
54) Davrinche, C., Orsi, A., Agosta, C., Amory, C., and Kittel, C. (2024). Understanding the drivers of near-surface winds in Adélie Land, East Antarctica, The Cryosphere, 18, 2239–2256, doi:10.5194/tc-18-2239-2024.
53) Landais, A., Agosta, C., Vimeux, F., Magand, O., Solis, C., Cauquoin, A., Dutrievoz, N., Risi, C., Leroy-Dos Santos, C., Fourré, E., Cattani, O., Jossoud, O., Minster, B., Prié, F., Casado, M., Dommergue, A., Bertrand, Y., and Werner, M. (2024). Abrupt excursions in water vapor isotopic variability at the Pointe Benedicte observatory on Amsterdam Island, Atmos. Chem. Phys., 24, 4611–4634, doi:10.5194/acp-24-4611-2024.
2023
52) Leroy-Dos Santos, C., Fourré, E., Agosta, C., Casado, M., Cauquoin, A., Werner, M., Minster, B., Prié, F., Jossoud, O., Petit, L., and Landais, A. (2023) From atmospheric water isotopes measurement to firn core interpretation in Adélie Land: a case study for isotope-enabled atmospheric models in Antarctica, The Cryosphere, 17, 5241–5254, doi:10.5194/tc-17-5241-2023.
51) Roussel, Marie‐Laure, Valentin Wiener, Christophe Genthon, Etienne Vignon, Eric Bazile, Cécile Agosta, Alexis Berne, Claudio Durán‐Alarcón, Jean‐Louis Dufresne, et Chantal Claud (2023). Assessing the Simulation of Snowfall at Dumont d’Urville, Antarctica, during the YOPP‐SH Special Observing Campaign. Quarterly Journal of the Royal Meteorological Society, qj.4463, doi:10.1002/qj.4463.
50) Servettaz, A. P. M., Agosta, C., Kittel, C., and Orsi, A. J. (2023) Control of the temperature signal in Antarctic proxies by snowfall dynamics, The Cryosphere, 17, 5373–5389, doi:10.5194/tc-17-5373-2023.
= IMBIE community paper =
49) Seroussi, H., Verjans, V., Nowicki, S., Payne, A. J., Goelzer, H., Lipscomb, W. H., Abe-Ouchi, A., Agosta, C., Albrecht, T., Asay-Davis, X., Barthel, A., Calov, R., Cullather, R., Dumas, C., Galton-Fenzi, B. K., Gladstone, R., Golledge, N. R., Gregory, J. M., Greve, R., Hattermann, T., Hoffman, M. J., Humbert, A., Huybrechts, P., Jourdain, N. C., Kleiner, T., Larour, E., Leguy, G. R., Lowry, D. P., Little, C. M., Morlighem, M., Pattyn, F., Pelle, T., Price, S. F., Quiquet, A., Reese, R., Schlegel, N.-J., Shepherd, A., Simon, E., Smith, R. S., Straneo, F., Sun, S., Trusel, L. D., Van Breedam, J., Van Katwyk, P., van de Wal, R. S. W., Winkelmann, R., Zhao, C., Zhang, T., and Zwinger, T. (2023) Insights into the vulnerability of Antarctic glaciers from the ISMIP6 ice sheet model ensemble and associated uncertainty, The Cryosphere, 17, 5197–5217, doi:10.5194/tc-17-5197-2023.
48) Otosaka, I. N. et al. (2023) Mass balance of the Greenland and Antarctic ice sheets from 1992 to 2020, Earth Syst. Sci. Data, 15, 1597–1616, doi:10.5194/essd-15-1597-2023.
2022
47) Akers, P. D., Savarino, J., Caillon, N., Servettaz, A. P. M., Le Meur, E., Magand, O., Martins, J., Agosta, C., Crockford, P., Kobayashi, K., Hattori, S., Curran, M., van Ommen, T. and Jong, L., Roberts, J. L. (2022) Sunlight-driven nitrate loss records Antarctic surface mass balance, Nature Communications, 13, 4274, doi:10.1038/s41467-022-31855-7.
46) Kittel, C., Amory, C., Hofer, S., Agosta, C., Jourdain, N. C., Gilbert, E., Le Toumelin, L., Vignon, É., Gallée, H., and Fettweis, X. (2022) Clouds drive differences in future surface melt over the Antarctic ice shelves, The Cryosphere, 16, 2655–2669, doi:10.5194/tc-16-2655-2022.
45) Wille J. D., Favier V., Jourdain N. C., Kittel C., Turton J. V., Agosta C., Gorodetskaya I. V., Picard G., Codron F., Leroy-Dos Santos C., Amory C., Fettweis X., Blanchet J., Jomelli V., Berchet A. (2022) Intense atmospheric rivers can weaken ice shelf stability at the Antarctic Peninsula. Communications earth & environment, 3, 90, doi:10.1038/s43247-022-00422-9.
2021
44) Diener T., Sasgen I., Agosta C., Fürst J.J., Braun M.H., Konrad H., Fettweis X. (2021) Acceleration of Dynamic Ice Loss in Antarctica From Satellite Gravimetry. Frontiers Earth Sci, 9, 741789, doi:10.3389/feart.2021.741789.
43) Amory, C., Kittel, C., Le Toumelin, L., Agosta, C., Delhasse, A., Favier, V., and Fettweis, X. (2021) Performance of MAR (v3.11) in simulating the drifting-snow climate and surface mass balance of Adélie Land, East Antarctica, Geosci. Model Dev., 14, 3487–3510, doi:10.5194/gmd-14-3487-2021.
42) Beaumet, J., Déqué, M., Krinner, G., Agosta, C., Alias, A., and Favier, V. (2021). Significant additional Antarctic warming in atmospheric bias-corrected ARPEGE projections with respect to control run, The Cryosphere, 15, 3615–3635, doi:10.5194/tc-15-3615-2021.
41) Donat-Magnin, M., Jourdain, N. C., Kittel, C., Agosta, C., Amory, C., Gallée, H., Krinner, G., and Chekki, M. (2021). Future surface mass balance and surface melt in the Amundsen sector of the West Antarctic Ice Sheet, The Cryosphere, 15, 571–593, doi:10.5194/tc-15-571-2021.
40) Kittel, C., Amory, C., Agosta, C., Jourdain, N. C., Hofer, S., Delhasse, A., Doutreloup, S., Huot, P.-V., Lang, C., Fichefet, T., and Fettweis, X. (2021). Diverging future surface mass balance between the Antarctic ice shelves and grounded ice sheet, The Cryosphere, 15, 1215–1236 doi:10.5194/tc-15-1215-2021
39) Mottram, R., Hansen, N., Kittel, C., van Wessem, J. M., Agosta, C., Amory, C., Boberg, F., van de Berg, W. J., Fettweis, X., Gossart, A., van Lipzig, N. P. M., van Meijgaard, E., Orr, A., Phillips, T., Webster, S., Simonsen, S. B., and Souverijns, N.: What is the surface mass balance of Antarctica? An intercomparison of regional climate model estimates (2021), The Cryosphere, 15, 3751–3784, doi:10.5194/tc-15-3751-2021.
38) Wille, J. D., Favier, V., Gorodetskaya, I. V., Agosta, C., Kittel, C., Beeman, J. C., et al. (2021). Antarctic atmospheric river climatology and precipitation impacts. Journal of Geophysical Research: Atmospheres, 126, e2020JD033788. doi:10.1029/2020JD033788
= ISMIP6 community papers =
37) Edwards, T. L. et al. (2021) Projected land ice contributions to twenty-first-century sea level rise. Nature, 593, 74–82, doi:10.1038/s41586-021-03302-y
36) Payne, A. J. et al. (2021) Future Sea Level Change Under Coupled Model Intercomparison Project Phase 5 and Phase 6 Scenarios From the Greenland and Antarctic Ice Sheets. Geophys Res Lett 48. doi:10.1029/2020GL091741
2020
35) Barthel, A., Agosta, C., Little, C.M., Hattermann, T., Jourdain, N.C., Goelzer, H., Nowicki, S., Seroussi, H., Straneo, F., and Bracegirdle, T.J. (2020) CMIP5 model selection for ISMIP6 ice sheet model forcing: Greenland and Antarctica, The Cryosphere, 14, 855–879, doi:10.5194/tc-14-855-2020.
34) Donat-Magnin M., Jourdain N.C., Gallée H., Amory C., Kittel C., Fettweis X., Wille J.D., Favier V., Drira A., & Agosta C. (2020). Interannual variability of summer surface mass balance and surface melting in the Amundsen sector, West Antarctica. The Cryosphere, 14, 229–249, doi:10.5194/tc-14-229-2020.
33) Richter K., Meyssignac B., Slangen A.B.A., Melet A., Church J.A., Fettweis X., Marzeion B., Agosta C., Ligtenberg S.R.M., Spada G., Palmer M.D., Roberts C.D., Champollion N. (2020). Detecting a forced signal in satellite-era sea level change. Environmental Research Letters, published online, doi:10.1088/1748-9326/ab986e
32) Servettaz A.P.M., Orsi A.J., Curran M.A.J., Moy A.D., Landais A., Agosta C., Winton V.H.L., Touzeau A., McConnell J.R., Werner M., Baroni M. (2020). Snowfall and water stable isotope variability in East Antarctica controlled by warm synoptic events. Journal of Geophysical Research: Atmospheres, 125, e2020JD032863. doi:10.1029/2020JD032863
31) The IMBIE team (2020) Mass balance of the Greenland Ice Sheet from 1992 to 2018. Nature, 579, 233–239 doi:10.1038/s41586-019-1855-2
= ISMIP6 community papers =
30) Goelzer H. et al. (2020) The future sea-level contribution of the Greenland ice sheet: a multi-model ensemble study of ISMIP6, The Cryosphere, 14, 3071–3096, doi:10.5194/tc-14-3071-2020
29) Nowicki, S. et al. (2020) Experimental protocol for sea level projections from ISMIP6 stand-alone ice sheet models. The Cryosphere, 14, 2331–2368, doi:10.5194/tc-14-2331-2020.
28) Seroussi H. et al. (2020) ISMIP6 Antarctica: a multi-model ensemble of the Antarctic ice sheet evolution over the 21st century, The Cryosphere, 14, 3033–3070, doi:10.5194/tc-14-3033-2020
2019
27) Agosta, C., Amory, C., Kittel, C., Orsi, A., Favier, V., Gallée, H., van den Broeke, M.R., Lenaerts, J.T.M., van Wessem, J.M., van de Berg, W.J., and Fettweis, X. (2019) Estimation of the Antarctic surface mass balance using the regional climate model MAR (1979–2015) and identification of dominant processes. The Cryosphere, 13, 281-296, doi:10.5194/tc-13-281-2019.
26) Beaumet J., Déqué M., Krinner G., Agosta C., & Alias A. (2019). Effect of prescribed sea surface conditions on the modern and future Antarctic surface climate simulated by the ARPEGE atmosphere general circulation model. The Cryosphere, 13, 3023–3043, doi:10.5194/tc-13-3023-2019.
25) Bréant C., Leroy Dos Santos C., Agosta C., Casado M., Fourré E., Goursaud S., Masson-Delmotte V., Favier V., Cattani O., Prie F., Golly B., Orsi A., Martinerie P., & Landais A. (2019). Coastal water vapor isotopic composition driven by katabatic wind variability in summer at Dumont d’Urville, coastal East Antarctica. Earth and Planetary Science Letters, 514, 37–47, doi:10.1016/j.epsl.2019.03.004.
24) Datta R.T., Tedesco M., Fettweis X., Agosta C., Lhermitte S., Lenaerts J.T.M., Wever N. (2019). The Effect of Foehn‐Induced Surface Melt on Firn Evolution Over the Northeast Antarctic Peninsula. Geophysical Research Letters, 46, 7, 3822-3831 doi:10.1029/2018GL080845.
23) Verfaillie D., Favier V., Gallée H., Fettweis X., Agosta C., & Jomelli V. (2019). Regional modeling of surface mass balance on the Cook Ice Cap, Kerguelen Islands (49°S, 69°E). Climate Dynamics, 53, 9-10, 5909–5925 doi:10.1007/s00382-019-04904-z.
22) Wille J.D., Favier V., Dufour A., Gorodetskaya I.V., Turner J., Agosta C., Codron F. (2019). West Antarctic surface melt triggered by atmospheric rivers. Nature Geoscience, 12, 911–916 doi:10.1038/s41561-019-0460-1.
2018
21) Datta R.T., Tedesco M., Agosta C., Fettweis X., Kuipers Munneke P., & van den Broeke M.R. (2018) Melting over the East Antarctic Peninsula (1999-2009): evaluation of a high-resolution regional climate model. The Cryosphere, 12, 2901-2922, doi:10.5194/tc-12-2901-2018.
20) Delhasse A., Fettweis X., Kittel C., Amory C., & Agosta C. (2018). Brief communication: Impact of the recent atmospheric circulation change in summer on the future surface mass balance of the Greenland Ice Sheet. The Cryosphere, 12, 3409-3418, doi:10.5194/tc-12-3409-2018.
19) Kittel C., Amory C., Agosta C., Delhasse A., Huot P.-V., Fichefet T., & Fettweis X. (2018). Sensitivity of the current Antarctic surface mass balance to sea surface conditions using MAR. The Cryosphere, 3827-3839, doi:10.5194/tc-12-3827-2018.
18) The IMBIE team (2018) Mass balance of the Antarctic Ice Sheet from 1992 to 2017. Nature, 558, 219–222, doi:10.1038/s41586-018-0179-y.
2017
17) Favier V., Krinner G., Amory C., Gallée H., Beaumet J., & Agosta C. (2017). Antarctica-Regional Climate and Surface Mass Budget. Current Climate Change Reports, 3, 303–315, doi:10.1007/s40641-017-0072-z.
16) Fettweis X., Box J.E., Agosta C., Amory C., Kittel C., Lang C., van As D., Machguth H., & Gallée H. (2017). Reconstructions of the 1900–2015 Greenland ice sheet surface mass balance using the regional climate MAR model. The Cryosphere, 11, 1015–1033, doi:10.5194/tc-11-1015-2017.
15) Meyssignac B., Slangen A.B.A., Melet A., Church J.A., Fettweis X., Marzeion B., Agosta C., Ligtenberg S.R.M., Spada G., Richter K., Palmer M.D., Roberts C.D., & Champollion N. (2017). Evaluating Model Simulations of Twentieth-Century Sea-Level Rise. Part II: Regional Sea-Level Changes. Journal of Climate, 30, 8565-8593, doi:10.1175/JCLI-D-17-0112.1.
14) Slangen A.B.A., Meyssignac B., Agosta C., Champollion N., Church J.A., Fettweis X., Ligtenberg S.R.M., Marzeion B., Melet A., Palmer M.D., Richter K., Roberts C.D., & Spada G. (2017). Evaluating model simulations of 20th century sea-level rise. Part 1: Global mean sea-level change. Journal of Climate, 30, 8539-8563, doi:10.1175/JCLI-D-17-0110.1.
2016
13) Slangen A.B.A., Church J.A., Agosta C., Fettweis X., Marzeion B., & Richter K. (2016). Anthropogenic forcing dominates global mean sea-level rise since 1970. Nature Climate Change, 6, 701–705, doi:10.1175/10.1038/nclimate2991.
2015
12) Agosta C., Fettweis X., & Datta R. (2015). Evaluation of the CMIP5 models in the aim of regional modelling of the Antarctic surface mass balance. The Cryosphere, 9, 2311–2321, doi:10.5194/tc-9-2311-2015.
11) Amory C., Trouvillez A., Gallée H., Favier V., Naaim-Bouvet F., Genthon C., Agosta C., Piard L., & Bellot H. (2015). Comparison between observed and simulated aeolian snow mass fluxes in Adélie Land, East Antarctica. The Cryosphere, 9, 1373–1383, doi:10.5194/tc-9-1373-2015.
10) Cornford S.L., Martin D.F., Payne A.J., Ng E.G., Brocq A.M.L., Gladstone R.M., Edwards T.L., Shannon S.R., Agosta C., van den Broeke M.R., Hellmer H.H., Krinner G., Ligtenberg S.R.M., Timmermann R., & Vaughan D.G. (2015). Century-scale simulations of the response of the West Antarctic Ice Sheet to a warming climate. The Cryosphere, 9, 1579–1600, doi:10.5194/tc-9-1579-2015.
2014
9) Krinner G., Largeron C., Menegoz M., Agosta C., & Brutel-Vuilmet C. (2014). Oceanic forcing of Antarctic climate change: A study using a stretched-grid atmospheric general circulation model. Journal of Climate, 27, 1–47, doi:10.1175/JCLI-D-13-00367.1.
8) Trouvillez A., Naaim-Bouvet F., Genthon C., Piard L., Favier V., Bellot H., Agosta C., Palerme C., Amory C., & Gallée H. (2014). A novel experimental study of aeolian snow transport in Adelie Land (Antarctica). Cold Regions Science and Technology, 108, 125–138, doi:10.1016/j.coldregions.2014.09.005.
2013
7) Agosta C., Favier V., Krinner G., Gallée H., & Fettweis X. (2013). High-resolution modelling of the Antarctic surface mass balance, application for the twentieth, twenty first and twenty second centuries. Climate Dynamics, 41, 3247–3260, doi:10.1007/s00382-013-1903-9.
6) Favier V., Agosta C., Parouty S., Durand G., Delaygue G., Gallée H., Drouet A.-S., Trouvillez A., & Krinner G. (2013). An updated and quality controlled surface mass balance dataset for Antarctica. The Cryosphere, 7, 583–597, doi:10.5194/tc-7-583-2013.
5) Gallée H., Trouvillez A., Agosta C., Genthon C., Favier V., & Naaim-Bouvet F. (2013). Transport of snow by the wind: a comparison between Observations in Adélie Land, Antarctica, and simulations made with the Regional Climate Model MAR. Boundary-Layer Meteorology, 146, 133–147, doi:10.1007/s10546-012-9764-z.
2012
4) Agosta C., Favier V., Genthon C., Gallée H., Krinner G., Lenaerts J.T., & van den Broeke M.R. (2012). A 40-year accumulation dataset for Adélie Land, Antarctica and its application for model validation. Climate Dynamics, 38, 75–86,doi:10.1007/s00382-011-1103-4.
3) Lenaerts J.T., van den Broeke M.R., Scarchilli C., & Agosta C. (2012). Impact of model resolution on simulated wind, drifting snow and surface mass balance in Terre Adelie, East Antarctica. Journal of Glaciology, 58, 821–829,doi:10.3189/2012JoG12J020.
2011
2) Favier V., Agosta C., Genthon C., Arnaud L., Trouvillez A., & Gallée H. (2011). Modeling the mass and surface heat budgets in a coastal blue ice area of Adelie Land, Antarctica. Journal of Geophysical Research: Earth Surface, 116, F03017,doi:10.1029/2010JF001939.
1) Gallée H., Agosta C., Gential L., Favier V., & Krinner G. (2011). A downscaling approach toward high-resolution surface mass balance over Antarctica. Surveys in Geophysics, 32, 507–518,doi:10.1007/s10712-011-9125-3.
RANK B & CONFERENCE PROCEEDINGS
4) Biette M., Jomelli V., Favier V., Chenet M., Agosta C., Fettweis X., Ho Tong Minh D., & Ose K. (2018). Estimation des températures au début du dernier millénaire dans l’ouest du Groenland : résultats préliminaires issus de l’application d’un modèle glaciologique de type degré‑jour sur le glacier du Lyngmarksbræen. Géomorphologie : relief, processus, environnement, 24, 1, doi:10.4000/geomorphologie.11977.
3) Agosta C., Fettweis X., & Gallée H. (2015). Contribution du bilan de masse de surface Antarctique à l’évolution du niveau des mers avec le modèle atmosphérique régional MAR. Actes du 28e colloque de l’Association Internationale de Climatologie, permalink.
2) Gallée H., Trouvilliez A., Agosta C., Genthon C., Favier V., & Naaim-Bouvet, F.(2012). Transport de la neige par le vent en Terre Adélie (Antarctique) : observation et modélisation avec le Modèle Atmosphérique Régional (MAR). Actes du 25e colloque de l’Association Internationale de Climatologie, permalink.
1) Dupeyrat A., Agosta C., Sauquet E., & Hendrickx F. (2008). Sensibilité aux variations climatiques d’un bassin à forts enjeux - Le cas de la Garonne. IWRA 13th World Water Congress, permalink.